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Autonomous leveling of granular materials is a ubiquitous yet challenging operation in automated construction due to the complex physics governing
the soil-tool interaction. This paper outlines a simulation-driven framework for optimizing low-level bulldozer blade control (pitch and height) to en-
hance leveling performance. The approach uses high-fidelity, physics-based simulations to generate training data. This data informs a Neural Network
(NN) based reduced-order model that accurately predicts both the terrain evolution and the leveling operation duration in response to blade actions. A
gradient-based, multi-objective optimization algorithm then utilizes the reduced-order model to determine optimal, time-varying blade control profiles,
managing the trade-off between leveling flatness and operation time. The proposed method augments the state-of-the-art by producing policies that
can readily level arbitrary soil pile configurations while avoiding vehicle immobilization and achieving better leveling efficiency. The system exhibits
robustness to variations in initial pile geometry, and offers explicit control over the trade-off between leveling quality and operational efficiency. By
integrating high-fidelity physics into the controller design and providing an open-source simulation pipeline, this work provides a low-level control
solution that complements existing global path planning algorithms for autonomous construction operations. The project’s resources, including code
and media demonstration, are available at: |link!|


https://uwsbel.github.io/Autonomous-Leveling/
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1 Introduction

Autonomous construction operations, including site
preparation, substructure construction, and superstruc-
ture assembly, have garnered significant attention in
recent years [} 2]. Granular material manipulation,

a close second to fluid handling in industrial applica-
tions relevance, presents significant challenges due

to the intricate physics that govern the interaction be-
tween the material and the manipulation blade. In the
field of autonomous leveling, Osaka et al. [3] demon-
strated that a heightmap model, utilizing Enhanced
Sand Pile Models (ESPM), can effectively describe
bulldozer-soil interactions. Combined with reinforce-
ment learning techniques, their algorithm was shown
to perform placement tasks. This heightmap-based ap-
proach was also employed to address stockpile mixing
through safe and efficient path planning. Inspired by
practical bulldozing operations, Hirayama et al. [4]
integrated integer linear programming for granular ma-
terial segmentation, subsequently used for bulldozer
path planning. Further work by Hirayama et al. [S]]
detailed a topological path planning methodology

to determine efficient multi-push sequences for bull-
dozers in dumping operations, focusing on the over-
all material handling strategy. Beyond path planning,
Wagner et al. [6] proposed a scheme for optimized
bulldozer blade control during leveling operations.
While the aforementioned studies were primarily val-
idated through simulation, other research has demon-
strated efficacy in real-world experiments. Address-
ing sensor fusion and blade state estimation, Kim et
al. [[7] developed a multi-sensor algorithm demonstrat-
ing high tracking accuracy, although this estimation
was not integrated into a feedback control loop. Lee
et al. emphasized the use of blade control by devel-
oping a Cartesian-space system aimed at enhancing
bulldozing performance through improved blade po-
sitioning [8]. Highlighting the importance of blade
control in autonomous bulldozing, Mononen et al. de-
veloped adaptive blade control strategies that enable
surface profile tracking and support semi-autonomous
operation [9, 10]. While these studies advanced blade
control capabilities, complementary research has fo-
cused on higher-level planning strategies. Adopting

a simulation-to-reality (sim2real) approach, Miron et
al. [[11, 12, 13]] employed a heightmap model for ter-
rain representation and rule-based route labeling to
generate a training dataset. Subsequently, a behavioral
cloning technique was used to train a Neural Network
(NN) for predicting agent routes for ground leveling.
In real-world testing, a top-view RGBD camera pro-

vided heightmap observations, and the trained NN pre-
dicted bulldozer routes for leveling ground piles.
Heightmap-based terrain models are the predominant
choice in state-of-the-art simulations of bulldozer-soil
interactions. This approach is embraced herein, as it
displays two key characteristics: it efficiently cap-
tures essential terrain height evolution during opera-
tions, and has demonstrated sim2real transferability
when coupled with depth sensors in real-world experi-
ments [3, 16, 11} 112, [13]]. Another common characteris-
tic of the state of the art is the utilization of simplified
or empirical models for the soil-bulldozer terrame-
chanics interaction. Existing research has employed
empirical force-based blade-soil interaction models
(e.g., ESPM [14,[15]), often times captured in simple
rules that emulate the interplay between soil heightmap
profiles and blade movement [6, 11, 16]. Inspired

by Wagner et al. [6], we employ a NN as a reduced-
order model, diverging from rule-based or empiri-

cal equation-based approaches. By using heightmap
frames as NN inputs and outputs, complex terrame-
chanics interactions can be embedded in the NN by
training the model with high-quality data. Furthermore,
the differentiability of NN models facilitates gradient-
based optimization tailored to meet operational require-
ments [[17,[18]]. This strategy of using differentiable
NN surrogates, trained on high-fidelity simulation data
for complex physical systems, is also finding appli-
cations in other domains involving particle dynamics.
For instance, Liu et al. employed a Graph Neural Net-
work (GNN) trained on DEM-SPH simulation data to
model particle-fluid flows, leveraging the GNN’s differ-
entiability for an inverse design framework to optimize
flow control structures [[19]].

While some studies [ 11, 6] note the high computa-
tional cost as a disadvantage of using physics-based
terramechanics simulation, we embrace this approach
for two reasons. Firstly, recent hardware (GPU accel-
eration [20]) and modeling (continuum hypo-elasto-
plastic terramechanics [21]]) advancements have im-
proved both the accuracy of the synthetic data and the
speed of producing it. As a rule of thumb, the real time
factor for a typical bulldozing simulation in this pa-
per is around 35; i.e., to simulate 1 second of the ve-
hicle bulldozing deformable terrain, one has to wait
approximately 35 seconds. Secondly, the higher fi-
delity simulation comes into play exclusively in the
synthetic data collection (data is subsequently used in
NN model training). Recently, machine learning tech-
niques have been increasingly employed to address
the computational challenges in demanding fields such
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Figure 1: Unlike other studies that aim at producing a leveling path or plan [3] (left side of the figure), this effort optimized
the blade control (height, pitch) for a given path for optimal leveling performance. (a) Initial configuration: The vehicle is positioned
before a soil pile targeted for leveling. (b) Fixed blade parameters: Suboptimal blade height and pitch leading to high resistance and
vehicle immobilization. (c) Baseline control (fixed parameters): The vehicle traverses the terrain but achieves suboptimal leveling due
to a static blade configuration. (d) Proposed learning-based control: Optimized blade pitch and height based on the initial terrain state,
achieving efficient soil displacement and enhanced leveling performance.

as computational fluid dynamics [22, 23]]. Thus, the
increased simulation time primarily impacts the train-
ing phase without affecting the operational aspects

of the autonomy solution. To generate high-fidelity
synthetic training data, this effort uses the Project
Chrono simulation engine [24]. The two modules em-

ployed are Chrono::Vehicle [25] and Chrono::FSI [26]].

Chrono’s vehicle and terrain co-simulation capabili-
ties enable high-fidelity simulation of vehicle power-
train dynamics, tire slip, and sinkage phenomena [23].
The terramechanics and vehicle co-simulation envi-
ronment have been previously validated against real
vehicle data, demonstrating the simulation engine’s

accuracy [21}27].

Problem Statement and Contributions

Recent advances in autonomous bulldozing have fo-
cused on path planning methodologies [[11. 3} [16]].
These approaches often rely on simplified representa-
tions of the complex dynamics at the bulldozer-terrain
interface. Although active blade control during opera-
tion has received attention [9, [10, 28], the systematic
optimization of adaptive, multi-degree-of-freedom

blade actions—crucial for achieving high-quality terrain
flatness—remains a key challenge, especially in a form
that complements global path planning strategies.

To address this, we leverage a high-fidelity physics
engine that accurately models the complex terrame-
chanics involved. However, its computational cost
makes it difficult for use in real-time control loops or
iterative optimization algorithms. To overcome this
limitation, we develop a reduced-order neural network
(NN) model [6], trained on data generated from high-
fidelity simulations to capture terrain deformation dy-
namics efficiently. This differentiable NN surrogate
enables a model-based optimization framework that
maximizes ground leveling performance via precise,
low-level control of blade actions—specifically pitch
and elevation. As illustrated in Fig.[I], our focus is on
the blade-soil interaction segment, i.e., determining
how an autonomous bulldozer should dynamically ac-
tuate its blade for optimal leveling. Our contributions
are threefold:

1. Integration of physics-based terramechanics sim-
ulation into the autonomous bulldozing design
framework.
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Figure 2: Overview of the data collection process involving a simulated two-pass terrain leveling operation. (Top-left) An initial
heightmap is recorded at # = 0.0 s. First operation: The bulldozer moves forward (0.0s-1.0s), then operates with blade control parameters
set 1 (1.0s-3.5s) followed by set 2 (3.5s- 6.0s). When it reached 6s or rightmost terrain limit, the bulldozer stops leveling and moves
back. This point in time is referred to as the first operation duration t(}. Bottom-left: An intermediate heightmap is recorded after

the bulldozer returns to the starting area at #4c,. Second Pass: Starting from #5,., the bulldozer again moves forward (for 1.0s), then
operates with blade parameters set 3 (active for 2.5s), followed by set 4 (active for another 2.5s). When the vehicle reaches 5, + 6 s
or the rightmost terrain limit, the simulation stops, at end time ¢,,;; the second operation duration is tﬁ = tond — tpack- Bottom-right: A
final heightmap is recorded at #,,;. Each simulation yields three heightmaps: initial # = 0, intermediate #5,.%, and final #,,,4.

2. Enhancement of autonomous bulldozing effi-
ciency through a data-driven optimal blade con-
trol strategy.

3. Sharing in an open-source repository the high-
fidelity simulation setup and training pipeline to
facilitate reproducibility and further research, see
link'.

2 Method

2.1 Reduced Order Modeling for Leveling Task

2.1.1 Terramechanics Simulation

The “physics-based” attribute of the terramechanics
model in[T)) above refers to the simulator’s ability to
capture soil deformation using fundamental continuum
mechanics principles - conservation of mass, momen-
tum, and stress evolution as shown in Eq. [I] The mate-
rial model considered is hypo-elasto-plastic, which is
a continuum model that captures the elastic and plastic
deformation of the soil. The equations governing the

deformation of the soil are:

fl—lz:—pv-u (1a)
dua V.o

= 4f 1b
7 P +1p (1b)
do . . A
~—0-0—-0- 1
r=¢-0-0bto, (10)

where p is the soil density, u is the soil velocity field,

f}, is the body force, é is the objective Jaumann stress
rate tensor, and ¢ = %(Vu — VuT) is the rotation rate
tensor. We solve the system of partial differential equa-
tions above numerically using the Smoothed Parti-

cle Hydrodynamics method, which is a Lagrangian
method. The simulation proceeds at time steps of ap-
proximately 10~* seconds, and the number of particles
associated with the soil dynamics is in the millions.
The main parameters associated with the soil model —
friction angle, cohesion coefficient, and bulk density

— are available based on the type of material that the
bulldozer interacts with, e.g., sand, clay, loam, silts,
snow. More parameters enter the model, but they are of
secondary importance and can be safely approximated.
For details, see [21]].
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The vehicle used was a four-wheel Gator with a two
degrees-of-freedom blade — elevation and pitch. One
actuator prescribes the blade’s pitch angle (in radians),
b, € [0, %], and another one governs the blade’s verti-
cal movement (in meters), b, € [—0.075,0.05]. At zero
pitch, the blade is perpendicular to the ground; at zero
vertical displacement, the blade is positioned 0.35m
above ground level. The control ranges consider fac-
tors such as blade width, mounting position relative to
the vehicle, and vehicle engine power. The soil piles
in their initial state are generated using a 2D Gaussian
distribution, with the height % at a point (x,y) given by:

(x _xc)z + (y _)’6)2
202

h(x,y) = himax - €xp | — } )
where the pile center is at (x.,y.) = (2,0) with a con-
stant standard deviation of ¢ = 0.4m. The most im-
portant parameter is the maximum soil pile height
hmax. This Gaussian distribution approach for soil

pile modeling has been widely adopted in the litera-
ture [13 [11% 16, 12} [13]].

2.1.2 Data Collection Process

Figure [2|illustrates the training data collection pro-
cess. We split each operation into two intervals, each
2.5 seconds long. Each of the two intervals has blade
control input (b, b;). The choice of two control in-
tervals 2.5 seconds long considered both empirical
evidence and data collection efficiency. Indeed, dur-
ing real bulldozing operation, an operator would ad-
Jjust the commands at about this frequency [10]. Intu-
itively, the more control intervals, the more effective
and smoother the leveling process. However, the data
collection process to support the training of the NN
model would become challenging in terms of storage
and number of simulations. To generate a diverse train-
ing set, 2000 random blade control pairs (b, € [0, %]
and b, € [—0.075,0.05]) and three different initial pile
heights, A4y, (0.3m, 0.4m, and 0.5m) were used, re-
sulting in 6000 simulation tests for training data collec-
tion. Each simulation test yields two distinct training
samples: the first captures transition from initial to
intermediate state, and second from intermediate to fi-
nal state, see Fig. [2)). Each sample’s input consists of
the pre-operation heightmap and two sets of random
blade control parameters, while the output includes
the resulting heightmap and the corresponding opera-
tion duration ;. The data collection process required
approximately 90 hours to complete, leveraging the
ACCESS GPU cluster [29] to run multiple simulations
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Figure 3: Architecture of the NN used for the gradient-based
optimization.
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Figure 4: Model prediction performance comparison, showing
the trade-off between model size and training loss. Although the
steady-state training losses for the large and medium models are
comparable, the medium model is preferred due to its superior
inference speed and relative simplicity.

Figure [3]illustrates the selected NN architecture. The
underlying principle is that NNs can learn to approxi-
mate complex physical interactions [30]. The initial
terrain heightmap is fed into a Convolutional Neu-

ral Network (CNN) based encoder, while two sets

of blade control inputs are processed by an action-
processing module based on Fully Connected Layers
(FCL). The choice to use CNN layers and an encoder-
decoder structure is based on their proven ability to
extract features from input images and predict output
images [31}132]]. The image and action input streams
are then concatenated to form a feature vector, which is
processed through FCL-based layers to create a latent
representation. This latent representation branches into
two heads: one feeds into a CNN decoder to predict
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the post-operation heightmap, while the other predicts
the operation duration. The NN learning problem in-
volves finding parameters 0 such that:

{h(ml‘vtd} = fe (hina M) ; (3)

where hjy,, hoy € [R200x100 4pe heightmaps before and
after the leveling operations, respectively, u € R**!

is a set of two pairs of blade control actions in differ-
ent time intervals during operation (blue and purple
section in Fig.[2)), and #; € R is operation duration. To
determine an efficient NN structure (e.g., number of
layers or neurons per layer in the encoder, decoder,
and other modules), a comparative study was con-
ducted with three different NN sizes: a large model
(39 million parameters), a medium model (2 million
parameters), and a small model (78 000 parameters).
As depicted in Fig. 4} the medium model achieved a
trade-off between training loss and model complexity.
The NN model proposed diverges from Wagner et

al. [6] in two aspects. Firstly, it leverages training data
of enhanced physical fidelity from detailed Chrono
simulations, which enables the NN to learn richer
physics, encompassing the prediction of both resul-
tant terrain heightmaps and operation times (Eq. [3).
Secondly, the model adopts an operational-level predic-
tion granularity, forecasting the outcome of an entire
forward leveling pass rather than continuous, step-by-
step terrain evolution. This operational focus, in turn,
significantly reduces training data requirements—a crit-
ical factor given lengthy high-fidelity data generation—
allowing for a streamlined NN architecture. This sim-
pler architecture eschews time-dependent modules
(e.g., LSTMs, RNNs), thereby accelerating design iter-
ations and prototyping.

2.2 The Blade Optimal Control Problem

With the NN-based reduced-order model fy of Eq.[3]
capturing the leveling operation, a multi-objective
gradient-based optimization problem is formulated to
determine the optimal blade control actions u*. Given
hin, the objective is to achieve a flat post-leveling ter-
rain h,,; that closely matches a desired post-leveling
flat terrain profile h;,5 € R200x100 wwhile minimizing
the operation time #,;:

n;in L(hin,u) = ||how —hdesH% +At

s.t. {hout;td} = fe (h,-n,u) .

The differentiability of the NN model fy allows for
the computation of the cost function’s gradient with re-
spect to the control actions u, enabling gradient-based

4)

optimization. By adjusting the time penalty parameter
A, the optimization can prioritize either the flatness of
the leveled ground, or the total operation time; i.e., it
addresses the trade-off between operational duration
and leveling quality.

The optimization is solved using the Adam algo-
rithm, which has proven effective for non-convex prob-
lems [33)134]]. The blade control update at iteration ¢ + 1
is:

U1 = Adam(uta Vug(ul)7 «, ﬁlv ﬁ27 8) ) (5)

where . (u) is the loss function in Eq. 4] o is the
learning rate, B; = 0.9 and 3, = 0.999 are the expo-
nential decay rates for the first and second moment
estimates, and € = 1078 is a numerical stability term.
Convergence typically requires 2000 to 3000 iterations
— approximately 3.6 — 5.5 seconds, with a learning rate
of 5x 107%.

2.3 Measuring Metrics for Earth-moving Task

To evaluate leveling performance, we use the per-
centage change in Mean Squared Error (AMSE) be-
tween the initial and final terrain heightmaps, af-

ter one bulldozer pass. This metric quantifies how
much the terrain reshaped toward the desired flat
distribution Ages = 0299%100 relative to its original
state. The Mean Squared Error (MSE) of a heightmap
h relative to hges is computed as MSE (h, hges) =

3 ¥ i(hij — haes ij)*. If MSEinitial = MSE (hin, hes)
and MSEgn, = MSE (hoyt, hges ), the change toward the
desired heightmap is

MSEipitial — MSEfinal

AMSE (%) =
(%) MSEipitial

x 100% .

(6)

A higher AMSE value indicates better leveling per-
formance, with negative values indicating degraded
terrain conditions. The perfect MSE score is 100% if
MSEfna1 equals zero, which means final heightmap
perfectly matched the desired flat terrain distribution.
This metric is aligned with the flatness objective in our
optimization framework, Eq.

3 Simulation Experiments

The autonomous leveling scheme employed is summa-
rized in Fig. 2| The initial pile has random heights, and
the optimization problem in Eq. 4 is solved to plan con-
trol action profiles. Subsequently, after the first level-
ing pass, the bulldozer receives an updated heightmap
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Figure 5: Algorithm performance demonstration with an initial
soil pile height of 0.37m. First row: A ’stuck’ scenario where
fixed blade parameters (control profile: red line, Fig. [6) result in
leveling failure. Second row: Fixed blade setting without optimal
control (control profile: green line, Fig. @, resulting in insufficient
material displacement despite completing one pass. Third row:
First pass using the proposed algorithm (AMSE=26.2%; control
profile: blue line, Fig.[6). Fourth row: Second pass using the
proposed algorithm, achieving a AMSE of 48.13%.

reflecting the newly formed soil distribution and ap-
plies optimal blade control again to perform a second
leveling operation. Currently, a specific stopping cri-
terion for the operation has not been defined; instead,
the bulldozer performs two forward leveling passes

in each trial (forward-backward-forward as action se-
quence). This approach is adopted because leveling
quality standards vary dynamically with construction
requirements. Therefore, it is more pertinent to demon-
strate the pipeline’s capability to conduct recursive
leveling operations based on updated terrain profile in-
formation. Low-level vehicle control commands were
implemented for bulldozer movements such as moving
forward, stopping at terrain boundaries, and moving
backward to the initial position. Since this work cen-
ters on optimizing low-level blade control, the control
policies for vehicle movement (such as throttle, brak-
ing, and steering), which were not the primary focus,
remained consistent throughout all experiments. We
present three categories of simulation results: a com-
parison of leveling quality with and without the pro-
posed algorithm; an assessment of the algorithm’s ro-
bustness across random initial pile configurations; and
an analysis of the trade-off between leveling quality
and operation duration.

3.1 Autonomous Leveling

Figure [5|compares the performance of the proposed
algorithm against leveling with constant blade settings
without active low-level adjustments. The latter ap-
proach leads to vehicle immobilization (vehicle gets
stuck and spins its wheels in place), or scenarios where
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Figure 6: Blade control action profiles logged during experiments
referenced in Fig. |§| and Fig. @

only small amounts of soil are displaced. The proposed
blade control strategy, which integrates data-driven
modeling with gradient-based optimization, resulted
in successful task completion and improved leveling
metrics as quantified by the AMSE score.

Height (m) Initial After 1st Level After 2nd Level AMSE
0.32 E | 42.76%
0.37 E  ' 48.13%
0.49 W | 35.75%

Figure 7: Algorithm performance across different initial pile
heights.

To assess the algorithm’s robustness, three additional
tests were conducted with different random initial pile
heights, A4y, supplementing the 0.37m pile height
results of Fig.[5] As shown in Fig.[7] the proposed al-
gorithm demonstrates effective performance across
various initial pile configurations. The lowest AMSE
score was observed for the case with the highest initial
pile. It is hypothesized that a larger volume of granular
material presents a greater challenge for the leveling
process, and an additional leveling pass might be bene-
ficial in such scenarios.
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3.2 The Trade-off Between Level Quality and Op-
eration Time
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Figure 8: Illustration of the trade-off between leveling quality
(AMSE) and operation time by varying the penalty parameter A.

As per the optimization formulation in Eq.[d] a smaller
value of the penalty parameter A yields a solution that
prioritizes terrain flatness over leveling speed. Fig-
ure [§illustrates this trade-off. The default value for

A is 1e—6, which produced the results shown in Fig.
and Fig.[7, When a larger A = 5e—4 is used (Fig. , the
flatness score (AMSE) decreases to 26.61%, while the
operation time is reduced by approximately 10%. In
Fig.[6] the action profile for this faster first pass (larger
A) is plotted as an orange line, contrasted with the blue
line representing the slower leveling process (default A
value). The plots capture a trade-off between the two
objectives: for slower, more thorough leveling (smaller
A), the blade’s vertical control tends to lower the blade
to gather more material, using pitch control to “hold
and spill” it effectively. Conversely, faster leveling
(larger A) employs higher blade positions to minimize
contact and resistance between the soil and the bull-
dozer.

4 Discussion

This work integrates physics-based terramechanics
with vehicle simulation to enhance the design process
for autonomous leveling policies. To mitigate the com-
putational burden associated with direct simulation, a
reduced-order, NN model was formulated, embedding
knowledge and training experience derived from high-
fidelity simulations. Leveraging the differentiability
of the NN, a gradient-based optimization problem was
formulated to control low-level blade actions for spe-
cific terrain profiles. The multi-objective optimization

framework provides flexibility to adjust blade control,
balancing operational time and leveling quality. The
proposed algorithm, by controlling low-level bulldozer
blade actions to optimize the leveling process, com-
plements existing research focused on global route
planning for bulldozers [11, 3, 4]. While the existing
global route planning solutions guide the bulldozer’s
global movement, our work concentrates on the blade’s
direct contact and interaction with the terrain. The en-
tire pipeline — including the high fidelity simulator,
NN-based reduced-order model, and the testing envi-
ronment — has been open-sourced due to its relevance
in other types of off-road robotics tasks (quadrupeds
and bipeds, tracked vehicles, etc.) Indeed, integrating
high-fidelity terramechanics and agent simulation into
simulation-based autonomy design holds broad appli-
cability.

Looking forward, developing a real-world testing fa-
cility to demonstrate the proposed algorithm’s effec-
tiveness combined with existing global routes planning
algorithms in physical environments is a key prior-
ity. This will involve constructing a scaled bulldozer
testbed, implementing a real-time ROS-based con-
trol framework, and bridging the simulation-to-reality
(sim2real) gap, particularly for utilizing realistic depth
sensor data [12,[11]. Secondly, the current state-of-
the-art autonomous grading policies primarily address
vehicle route planning. Combining the proposed low-
level control with these advanced global planning al-
gorithms could yield robust and efficient performance
for real-world applications. Lastly, while this work
utilized the NN-based reduced-order model within a
gradient-based control framework, its computational
efficiency also opens possibilities for experimentation
with other control paradigms, such as Reinforcement
Learning or Imitation Learning.
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